

Thermal Management Studies in Samsung Electronics Corporation

Ki Wook Jung, Ph.D.

& 2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **1**

Contents of Today's Talk

Pursuit of simplicity and accuracy in on-chip/off-chip thermal simulation

Ref1: 10.1109/ECTC51909.2023.00041

Modeling Methodology for ETC

** Effective Thermal Conductivity*

&

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **4**

ELECTRONICS

The 2024 IEEE 74th Electronic Compor and Technology Conference

Modeling

Certifying a Thermal Analysis Tool

Three key questions to be answered today

Why? How? Thermal analysis of A well-defined 2.5D/3D IC multi-die procedure for tool certification systems What? A multiphysics & multiscale simulation platform *Icepak* vs.*RedHawk-SC Electrothermal*

Advanced Heterogeneous Integration (@ SFF 2022)

Certifying a Thermal Analysis Tool

&

Ansys

Tool Certification IEEE

SOCIETY

PKG-level Thermal Management Tests

3DIC TTV Test setup

A heat sink with minichannels array (1) is used to dissipate heat from the 3D TTV to chilled coolant, DI water, at 25°C. Heaters and RTDs ($-$ –) are defined in Back-End-of-Lines (BEOLs, \blacksquare) of top/bottom chips ($(2,4)$). The joint-gap between top and bottom chips (③) consists of 50k microbumps and non-conductive film (NCF).

Ref2: 10.1109/ECTC51906.2022.00169

CTRONICS

und Technology Conference

PKG-level Thermal Management Tests PKG-level

Each heater group is boxed by dashed-rectangles in different colors

Approach 1 & 2 : investigate the effect of joint gap between top/bottom dies on thermal behavior of the 3DIC TTV

Table 1. Coded values of the input parameters for the central composite design (CCD) ($x \neq y$)

and Technology Conference

ECTRONICS

Coded values of each heater group's q" w.r.t. their actual values. A coded value, -2, corresponds to the minimum, and a coded value, +2, corresponds to the maximum of each heater group's heat flux.

Ref2: 10.1109/ECTC51906.2022.00169

PKG-level Thermal Management Tests

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **9**

Set-level LPV ROM Validation Effort

Needs for "Fast & Accurate" Simulation

- Traditional 3D CFD is too slow to estimate benchmark performance \rightarrow Need for "Fast" Sim.
- LTI ROM is not applicable for time varying boundary condition
- LPV ROM is can be used for forced convection, but not
- for natural convection and radiation
- Therefore, a Modified LPV ROM is suggested for natural convection & radiation conditions

Set-level Validation **CTRONICS**

nd Technology Conference

Ref3: 10.1109/ITherm55368.2023.10177511

Set-level LPV ROM Validation Effort

&

Ansys

Set-level LPV ROM Validation Effort

&

SAMSUNG

Ansys

Set-level

Validation

Ref3: 10.1109/ITherm55368.2023.10177511

[1] K. W. Jung, E. Hwang, J. Seomun and S. Kim, "A Time and Cost-Efficient Design Methodology to Estimate Effective Thermal Conductivities in System-on-Chips with Composite Materials," 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023, pp. 192-199, doi: 10.1109/ECTC51909.2023.00041.

[2] K. W. Jung, E. Cho, S. Jo, S. Ryu, J. Kim and D. K. S. Oh, "Assessment of Thermal-aware Floorplans **in a 3D IC for Server Applications," 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022, pp. 1036-1047, doi: 10.1109/ECTC51906.2022.00169.**

[3] Y. Im, G. Jung, M. Lee, A. Gangrade and S. Kim, "Thermal Modeling and Optimization of Mobile Device **using modified LPV ROM," 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2023, pp. 1-8, doi: 10.1109/ITherm55368.2023.10177511.**

Efficient and Innovative Thermal Management for Power Hungry AI/ ML Applications: Challenges and Opportunities

Mudasir Ahmad

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **1**

Disclaimer: The information outlined in these slides are not official Google Communication or Position

Contents

- **AI/ML Power Consumption Trajectory**
- **AI/ML Software Trajectory**
- **AI/ML Thermal Challenges**
- **Thermal Design Parameters**
- **Thermal Solution Decision Making Framework**
- **Standardization Opportunities**
- **Opportunities for Advanced Packaging**
- **Future / Opportunities**

AI/ML Power Consumption Trajectory

Next Gen Nvidia Systems will be [liquid cooled](https://www.datacenterdynamics.com/en/news/nvidias-ceo-confirms-next-dgx-will-be-liquid-cooled/)

[Reference: Schneider Electric](https://www.se.com/ww/en/download/document/SPD_WP110_EN/?ssr=true)

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **4**

AI/ML Power Consumption Trajectory

GFLOPS/Watt

•Hardware efficiency is improving significantly

•However, power consumption is still increasing

•Even with hardware improvements, systems are still very power hungry

[R. Desislavov, "Trends in AI inference energy consumption: Beyond the performance-vs-parameter laws of deep learning", Sustainable Computing:](https://www.sciencedirect.com/science/article/pii/S2210537923000124) Informatics and Systems, 2023

AI/ML Software Trajectory

- From 2010 2020, AI/ML algorithms have grown exponentially
- Algorithms could rapidly evolve from one approach to another
- Different categories evolving rapidly for different applications
- Faster evolution than Hardware Development timescales
- AI/ML software evolving every 8 months*

*Ho, A; Besiroglu, T; "[ALGORITHMIC PROGRESS IN LANGUAGE MODELS](https://arxiv.org/pdf/2403.05812.pdf)" 2024

utation is taken from Sevilla et al. (2022) - Parameter, Compute, and Data Trends in Machine Lea It is estimated by the authors and comes with some uncertainty. The authors expect the estimates to be correct within a factor of two. Charlie Giattino. Edouard Mathieu, and Max Ro

Licensed under CC-BY by the au

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **6**

AI/ML Thermal Challenges

AI/ML hardware is an entire *system* - not just a chip

A specific thermal solution may be great

But…is it:

Reliable? Manufacturable? Compatible with existing technologies? Cost Effective? Aligned with future hardware roadmap? Etc.

Thermal solutions need to be optimized for scale across multiple dimensions

Thermal Design Parameters

This means EACH design is unique and needs to be optimized independently

Thermal Solution Decision Making Framework - SPARCS

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **9**

Standardization Opportunities

- Where possible, standardization speeds up product development, reduces cost and enables rapid scaling
- Potential Opportunity Examples:
	- Reliability Testing of Thermal Interface Materials
	- Quick connect/disconnect interface specifications and reliability testing
	- Pump specifications and reliability testing
	- Coolant specifications and reliability testing
	- Cold Plate specifications and reliability testing
	- Common testing software specifications

[OCP Cooling Environments Project](https://www.opencompute.org/projects/cooling-environments) is an example of such an effort

Opportunities for Advanced Packaging

CTRONICS

und Technology Conference

Significant cross-collaboration, research and development is needed (and underway) in all these areas

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **12**

Efficient and Innovative Thermal Management for Advanced Semiconductor Packaging

Tiwei Wei

Assistant Professor, School of Mechanical Engineering Semiconductor Packaging Laboratory (S-PACK Lab) Birck Nanotechnology Center Purdue University tiwei@purdue.edu

Semiconductor Packaging Laboratory

(All-in-one for Semiconductor Packaging, Heat transfer, and Assembly Lab)

Thermal solutions for Heterogeneous 3D integration

ELECTRONICS

and Technology Conference

Integration of Advanced Thermal Solutions into the Heterogeneous Package

Chip/Package Level Jet Impingement Cooling

ELECTRONICS

The 2024 IEEE 74th Electron

and Technology Conference

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **4**

Chip/Package Level Microchannel Cooling

ILLE
ELECTRONICS
PACKAGING The 2024 IEEE 74th Electronic Compor and Technology Conference

2024 IEEE 74th Electronic Components and Technology Conference │Denver, Colorado │ May 28 – May 31, 2024 **5**

Intra-/Inter-Chip Microchannel Cooling

ILLE
ELECTRONICS
PACKAGING

The 2024 IEEE 74th Electronic and Technology Conference

IEEE
ELECTRONICS
ET PACKAGING Material Development for Thermal Management

CuNWs/PDMS based Thermal Interface Materials (TIMs)

Bi-layer materials with Heat Spreading and Thermal Insulation

Thermally-enhanced Micro-bump with Embedded Metal Structure

Wang, Wei, et al., ECTC 2024

and Technology Conference

Acknowledgement to collaborators

Justin Weibel *Purdue University (ME)*

Bahgat G. Sammakia *Binghamton University (ME)*

Scott Schiffres Binghamton University (ME) Ryan Enright
Binghamton University (ME) Converts

Seguente

Srikanth Rangarajan *Binghamton University (ME)*

Ken Goodson *Stanford University (ME)*

Mehdi Asheghi *Stanford University (ME)*

Amy Marconnet *Purdue University (ME)*

Xiulin Ruan *Purdue University (ME)*

Semiconductor Research Corporation

Thermal Simulation for 3DHI

Chris Ortiz, Ph. D. Ansys

3DHI and Multi-Scale/Stage/Physics

High capacity handling **Heterogeneous** technologies **Complex** Die stacking (billions of connections)

 \mathbf{y} is company

W

SignOff the 3D-IC Implementation

Coupling of Physical Effects

Multiple Physics & Coupling

"New" topics for Semiconductors: **Thermal Integrity of Chiplet**: T° and many possible impacts Temperature vs. Timing… **Structural Integrity of Chiplet** (Thermal stress) Stress on device performance, reliability

Coupling of physics

Temperature is corner stone of coupling

Power and thermal runaway Resistance and electromigration Stress and coefficients of thermal expansion

Reliability

Selfheat FINFET, GAAFET, CFET, device to wire, wire to wire **Fatigue, Fracture, Vibration, Aging, Radiation…**

Driving applications: HPC / AI / 5G

- \checkmark Hierarchical thermal model stitching technique to assembly the thermal model to handle heterogenous 3D-IC system
- \checkmark Global model simulation of 100 μ m^{*}100 μ m low-resolution meshing within 5 hours, followed by detailed model simulation of each die using **Intelligent Adaptive Meshing in 1.5 hours**
- \checkmark 3D-IC junction Tmax optimization with HTC applied on the package surface and heat spreader components included.

3D-IC system with GPU/CPU/HBM/logic dies assembled on a 50mm*50mm CoWoS

Intelligent Adaptative meshing to reduce total mesh count without accuracy loss

Thermal result for large 3DIC

Fast Static/Transient Thermal Analysis

Performance and reliability degradation

Aging, EM, IR drops, stress, switching speed, etc.

CTRONICS

and Technology Conference

- Fine grained thermal analysis on large 3DIC designs not possible using purely traditional FEA/CFD based approaches
- Long sequences of transient power need to be simulated to accurately predict how thermal hotspots change with time

Architecture level fast static/transient thermal analysis for various optimizations are required. (i.e. power/DvD/thermal/stress/test/sensor place)

 \mathbf{y} is company

"**Emerging Challenges on Thermal Modeling and Simulation for Advanced 3DIC Systems", N. Chang, Keynote, REPP, 2022**

ML-Augmented Static Thermal Solver for ML-based Hotspots Detection

DeepONet network structure for pre-trained NFE model

Two decay curve approaches in the flow:

- Characterize the decay curves in real-time at different locations. SSMR can be generated in real-time as well based on 3-layer die model.
- Use pre-trained decay ML models. The decay ML models will include both the nominal decay predictor and the decay dependency on locations and local thermal conductivity.
- With orders of magnitude faster than FEA/CFD solvers in a distributed computing framework based on SeaScape

 \mathbf{y} is company **Logo and the contract of the**

Machine-learning based Static Thermal Solver with Distributed HTC

ECTRONICS and Technology Conference

- Developed a novel Machine-Learning based Thermal solver to accurately predict chip temperatures for arbitrary power maps and distributed HTC patterns.
- The ML-Solver is inspired from keys ideas of traditional Ansys solvers. It iteratively solves for temperature on discrete subdomains given the power map, HTC and initial temperature. Flux conservation in each iteration is established using pre-trained ML models
- The ML-Solver is about 100x faster than current solvers and accurately predicts high-fidelity temperature maps on the chip.

 \mathbf{y} is company

Ranade, R., Haiyang, H., Pathak, J., Kumar, A., Wen, J. & Chang, N. (2022). A Thermal Machine Learning Solver for Chip Simulations*. 4th ACM/IEEE Workshop on Machine Learning for CAD*

Optimization of Mobile Pkg Material Calibration for Thermal/Stress Integrity

As-is process/Challenges

- Sensitivity analysis of thermal material properties of mobile AP
- Fast and Accurate equivalent virtual thermal testing model \rightarrow Simple Model
- Trial & Error approach for fine tuning material \rightarrow Expensive!
- Too many trials (1000+) need to be performed for 10+ parameters
- Challenges:
	- Significant manual effort for 1000+ trials
	- Accurate simple model for transient thermal analysis
	- Reduced Dependency on package type

Ansys Value Stream

- Robust workflow integration and optimization with optiSLang-AEDT Icepak
- Reduced input BC conditions and material properties (h,K,CP and Den)
- Sensitivity analysis with thermal material parameter of components.

Outcome

- Extract optimized equivalent properties of Simple model that is well matched with reference data
- Automatic DOE reduction to reduce the overall time for optimization.
- Reduced time for optimization and increased accuracy
	- 2~4 Weeks \rightarrow 4~5 Days

"Thermal Model Simplification of Mobile Device with Adaptive Metalmodel of Optimal Prognosis (AMOP)", V. Krishna, et al., iTherm, 2022

Time [sec]