

Thermal Management Studies in Samsung Electronics Corporation

Ki Wook Jung, Ph.D.

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

Contents of Today's Talk

Pursuit of simplicity and accuracy in on-chip/off-chip thermal simulation

Ref1: 10.1109/ECTC51909.2023.00041

Modeling Methodology for ETC * Effective Thermal Conductivity

Certifying a Thermal Analysis Tool

Three key questions to be answered today

SAMSUNG

& /\nsys

Advanced Heterogeneous Integration (@ SFF 2022)

Samsung Foundry's

Certifying a Thermal Analysis Tool

/\nsys

&

Certification

IEEE

SOCIETY

PKG-level Thermal Management Tests

3DIC TTV Test setup

A heat sink with minichannels array (1) is used to dissipate heat from the 3D TTV to chilled coolant, DI water, at 25°C. Heaters and RTDs (---) are defined in Back-End-of-Lines (BEOLs, \blacksquare) of top/bottom chips (2,4). The joint-gap between top and bottom chips (3) consists of 50k microbumps and non-conductive film (NCF).

Ref2: 10.1109/ECTC51906.2022.00169

CTRONICS

and Technology Conference

PKG-level Thermal Management Tests

Each heater group is boxed by dashed-rectangles in different colors

Approach 1 & 2 : investigate the effect of joint gap between top/bottom dies on thermal behavior of the 3DIC TTV

Table 1. Coded values of the input parameters for the central composite design (CCD) (x \neq y)

RSM design	Coded values					
Heat flux of j th heater group	-2	-1	0	1	2	
q" ₁	0.1	0.2	0.3	0.4	0.5	
q"2	0.2	0.425	0.65	0.875	1.1	
q" ₃	0.2	0.425	0.65	0.875	1.1	
q''_4	0.2	0.425	0.65	0.875	1.1	
q" ₅	0.1	0.2	0.3	0.4	0.5	

and Technology Conference

ECTRONICS

Coded values of each heater group's q" w.r.t. their actual values. A coded value, -2, corresponds to the minimum, and a coded value, +2, corresponds to the maximum of each heater group's heat flux.

Ref2: 10.1109/ECTC51906.2022.00169

PKG-level Thermal Management Tests

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

Set-level LPV ROM Validation Effort

Needs for "Fast & Accurate" Simulation

- Traditional 3D CFD is too slow to estimate benchmark
 performance → Need for "Fast" Sim.
- LTI ROM is not applicable for time varying boundary condition
- LPV ROM is can be used for forced convection, but not
- for natural convection and radiation
- Therefore, a Modified LPV ROM is suggested for natural convection & radiation conditions

Set-level

CTRONICS

nd Technology Conference

Ref3: 10.1109/ITherm55368.2023.10177511

Set-level LPV ROM Validation Effort

Set-level LPV ROM Validation Effort

SAMSUNG

/\nsys

EEE

AGING

Ref3: 10.1109/ITherm55368.2023.10177511

[1] K. W. Jung, E. Hwang, J. Seomun and S. Kim, "A Time and Cost-Efficient Design Methodology to Estimate Effective Thermal Conductivities in System-on-Chips with Composite Materials," 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023, pp. 192-199, doi: 10.1109/ECTC51909.2023.00041.

[2] K. W. Jung, E. Cho, S. Jo, S. Ryu, J. Kim and D. K. S. Oh, "Assessment of Thermal-aware Floorplans in a 3D IC for Server Applications," 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022, pp. 1036-1047, doi: 10.1109/ECTC51906.2022.00169.

[3] Y. Im, G. Jung, M. Lee, A. Gangrade and S. Kim, "Thermal Modeling and Optimization of Mobile Device using modified LPV ROM," 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2023, pp. 1-8, doi: 10.1109/ITherm55368.2023.10177511.

Efficient and Innovative Thermal Management for Power Hungry AI/ ML Applications: Challenges and Opportunities

Mudasir Ahmad

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

2

Disclaimer: The information outlined in these slides are not official Google Communication or Position

Contents

- AI/ML Power Consumption Trajectory
- AI/ML Software Trajectory
- AI/ML Thermal Challenges
- Thermal Design Parameters
- Thermal Solution Decision Making Framework
- Standardization Opportunities
- Opportunities for Advanced Packaging
- Future / Opportunities

AI/ML Power Consumption Trajectory

Schneider Electric estimate	2023	2028
Total data center power consumption	57 GW	93 GW
AI power consumption	4.5 GW	14.0-18.7 GW
AI power consumption (% of total)	8%	15-20%
AI workload (Training vs Inference)	20% Training, 80% Inference	15% Training, 85% Inference
Al workload (Central vs Edge)	95% Central, 5% Edge	50% Central, 50% Edge

GPU	TDP (W) ¹¹	TFLOPS ¹² (Training)	Performance over V100	TOPS ¹³ (Inference)	Performance over V100
V100 SXM2 32GB	300	15.7	1X	62	1X
A100 SXM 80GB	400	156	9.9X	624	10.1X
H100 SXM 80GB	700	500	31.8X	2,000	32.3X

Next Gen Nvidia Systems will be liquid cooled

Reference: Schneider Electric

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

AI/ML Power Consumption Trajectory

GFLOPS/Watt

•Hardware efficiency is improving significantly

•However, power consumption is still increasing overall

•Even with hardware improvements, systems are still very power hungry

2019

Date

2020

R. Desislavov, "Trends in Al inference energy consumption: Beyond the performance-vs-parameter laws of deep learning", Sustainable Computing: Informatics and Systems, 2023

AI/ML Software Trajectory

- From 2010 2020, AI/ML algorithms have • grown exponentially
- Algorithms could rapidly evolve from one ٠ approach to another
- Different categories evolving rapidly for ٠ different applications
- Faster evolution than Hardware Development ٠ timescales
- AI/ML software evolving every 8 months* •

*Ho, A; Besiroglu, T; "ALGORITHMIC PROGRESS IN LANGUAGE MODELS" 2024

The rise of artificial intelligence over the last 8 decades: As training computation has increased, AI systems have become more powerful	Our Wor in Data
he color indicates the domain of the AI system: • Vision • Games • Drawing • Language • Other	

that was used to tra	al axis is the ain the Al syst	training compu ems.	tation	N	Minerva finerva can solve	built in 2022 and tra complex mathematica	ined on 2.7 billion	petaFLOP college level.
10 billion petaFLOP				PaLM can generate	e high-quality te	in 2022 and trained o xt, explain some jokes, o	cause & effect, and	more.
Comp One F multip	outation is measure FLOP is equivalent plication, or divisio	d in floating point ope to one addition, subtr n of two decimal num	erations (FLOP). action, bers.			GPT-3: 2020; 31 GPT-3 can produce hig often indistinguishable	4 million petaFLC h-quality text that from human writir)P is Ig.
100 million petaFLOP				DALL-E co	an generate high	DALL-E: 2021; 47 -quality images from w	million petaFLOP ritten descriptions	
The data is shown on a logar from each grid-line to the ne increase in training computa	rithmic scale, so the ext it shows a 100-f ation.	at old		Recommendation sys	tems like Facebo ia feed, online sh	NEO: 2021; 1.1 mill bok's NEO determine w	ion petaFLOP hat you see on ices, and more,	X
1 million petaFLOP			Alţ	ohaGo defeated 18-tin complex board gan	AlphaG ne champion Lee ne Go. The best (o: 2016; 1.9 million pe Sedol at the ancient an So players are no longe	etaFLOP nd highly r human.	
10,000 petaFLOP			AlphaFold was a ma	jor advance toward so	AlphaFold: lving the protein	2020; 100,000 petaF folding problem in bio	LOP logy.	
			MuZero is a si chess, and sh	ngle system that achie 10gi (Japanese chess) –	MuZero: 2019 ved superhumar all without eve	9; 48,000 petaFLOP performance at Go, r being told the rules.		
100 petaFLOP		A pi	ivotal early "deep learr could recognize image	ning" system, or neural s of objects such as do	AlexNet: 2012; network with m gs and cars at ne	470 petaFLOP any layers, that car-human level.	• •	
						NDLM		
1 petaFLOP = 1 quadril	llion FLOP							
					De	cision tree		•
10 trillion ELOP			TD-Gammo	on: 1992: 18 trillion F	LOP LST	м., •		
to thillon FLOP		TD	Gammon learned to p	alay backgammon at a	high			
		le	vei, just below the top	numan players of the	ume.	LeNet-5		
100 billion ELOP						RNN for speech		
	NetTalk was text as input limitatio	able to learn to pronou and matching it to pho ns, it did not perform ti	NetTalk: 1987; 8 nce some English text netic transcriptions. A he visual recognition o	1 billion FLOP • by being given mong its many of the text itself.	 ALVINN Zip CNN 			
1 billion FLOP	Pa	ndemonium (Morse)				System 11		
	•s	amuel Neural Checke	rs	•				
10 million FLOP				Back Neocognitron: 198 A precursor of model handwritten Japane	c-propagation 30; 228 million ern vision system ase characters ar	FLOP is. It could recognize ind a few other patterns.		
100 000 EL OB	Perce Regard	ptron Mark I: built in led as the first artificial	1957/58; 695,000 F neural network, it cou	LOP Ild visually distinguish	Fuzzy I cards marked of	NN n the left side		
100,000 FLOF	from t	hose marked on the rig	ht, but it could not lea	rn to recognize many o	ther types of pai	terns.		
1.000 FLOP		ADALINE: built in 1 An early single-layer	960 and trained on a artificial neural netwo	rround 9,900 FLOP rk.				
10 FLOP	heseus: built in 195 Theseus was a small r hat could navigate a	iO and trained on arou obotic mouse, develope simple maze and reme	und 40 floating point ed by Claude Shannon mber its course.	operations (FLOP)				
The first electronic computers were developed in the 1940s	1	raining computation g	Pre Deep I rew in line with Moor	Learning Era re's law, doubling roug	hly every 20 mc	onths.	Increases accelera	ep Learning Era - in training comput ited, doubling roug every 6 months.
	· · · ·	0		1	11	110		1

Licensed under CC-BY by the au

6

t is estimated by the authors and comes with some uncertainty. The authors expect the estimates to be correct within a factor of two. Charlie Giattino, Edouard Mathieu, and Max Ro

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

AI/ML Thermal Challenges

AI/ML hardware is an entire system - not just a chip

A specific thermal solution may be great

But...is it:

Reliable? Manufacturable? Compatible with existing technologies? Cost Effective? Aligned with future hardware roadmap? Etc.

Thermal solutions need to be optimized for scale across multiple dimensions

Thermal Design Parameters

This means EACH design is unique and needs to be optimized independently

Thermal Solution Decision Making Framework - SPARCS

(S)chedule	Can this solution be implemented at scale for the current planned deployment schedule?
(P)rocess	Does a manufacturing process/workflow exist for it to the deployed at scale?
(A)Iternatives	Do viable, scalable alternatives exist if this does not work? Are they production ready?
(R)eliability	What is the reliability of the solution relative to others? Does it meet or exceed the reliability Requirements?
(R)eliability (C)ost	What is the reliability of the solution relative to others? Does it meet or exceed the reliability Requirements? Is the solution end-to-end cost effective?

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

Standardization Opportunities

- Where possible, standardization speeds up product development, reduces cost and enables rapid scaling
- Potential Opportunity Examples:
 - Reliability Testing of Thermal Interface Materials
 - Quick connect/disconnect interface specifications and reliability testing
 - Pump specifications and reliability testing
 - Coolant specifications and reliability testing
 - Cold Plate specifications and reliability testing
 - Common testing software specifications

OCP Cooling Environments Project is an example of such an effort

Opportunities for Advanced Packaging

- IEEE ELECTRONICS PACKAGING SOCIETY The 2024 IEEE 74th Electronic Components and Technology Conference
- Several opportunities for holistic thermal performance enhancement of advanced packaging

Algorithms	Could there be novel algorithms developed, that do not require such large power and chips to run?			
Architecture	Could there be radical changes in architecture, resulting in a step function drop in power requirements?			
Thermal Solutions	Could there be novel thermal solutions that simultaneously address large thermal gradients, high power density and fluctuations in a scalable way?			

Significant cross-collaboration, research and development is needed (and underway) in all these areas

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024 **12**

Efficient and Innovative Thermal Management for Advanced Semiconductor Packaging

Tiwei Wei

Assistant Professor, School of Mechanical Engineering Semiconductor Packaging Laboratory (S-PACK Lab) Birck Nanotechnology Center Purdue University tiwei@purdue.edu

Semiconductor Packaging Laboratory

(<u>Al</u>l-in-one for Semiconductor <u>P</u>ackaging, <u>H</u>eat transfer, and <u>A</u>ssembly Lab)

Thermal solutions for Heterogeneous 3D integration

2

ELECTRONICS

and Technology Conference

Integration of Advanced Thermal Solutions into the Heterogeneous Package

Chip/Package Level Jet Impingement Cooling

Two-phase Impingement Jet Cooling with Porous Wick

ELECTRONICS PACKAGING

and Technology Conference

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

Chip/Package Level Microchannel Cooling

IEEE ELECTRONICS PACKAGING SOCIETY The 2024 IEEE 74th Electronic Components and Technology Conference

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

Intra-/Inter-Chip Microchannel Cooling

EEE

ELECTRONICS PACKAGING

> The 2024 IEEE 74th Electronic Com and Technology Conference

Material Development for Thermal Management Electronics

CuNWs/PDMS based Thermal Interface Materials (TIMs)

Bi-layer materials with Heat Spreading and Thermal Insulation

<u>Thermally-enhanced Micro-bump with</u> <u>Embedded Metal Structure</u>

Wang, Wei, et al., ECTC 2024

and Technology Conference

Acknowledgement to collaborators

Justin Weibel Purdue University (ME)

Bahgat G. Sammakia Binghamton University (ME)

Scott Schiffres Binghamton University (ME)

Ryan Enright Seguente

Srikanth Rangarajan Binghamton University (ME)

Ken Goodson Stanford University (ME)

Mehdi Asheghi Stanford University (ME)

Amy Marconnet Purdue University (ME)

Xiulin Ruan Purdue University (ME)

Semiconductor Research Corporation

8

Thermal Simulation for 3DHI

Chris Ortiz, Ph. D. Ansys

2024 IEEE 74th Electronic Components and Technology Conference | Denver, Colorado | May 28 – May 31, 2024

3DHI and Multi-Scale/Stage/Physics

High capacity handling Heterogeneous technologies Complex Die stacking (billions of connections)

Ansys

SignOff the 3D-IC Implementation

Coupling of Physical Effects

and Technology Conference

Multiple Physics & Coupling

"New" topics for Semiconductors: **Thermal Integrity of Chiplet**: T° and <u>many possible impacts</u> Temperature vs. Timing... **Structural Integrity of Chiplet** (Thermal stress) Stress on device performance, reliability

Coupling of physics

Temperature is corner stone of coupling

Power and thermal runaway Resistance and electromigration Stress and coefficients of thermal expansion

Reliability

Selfheat FINFET, GAAFET, CFET, device to wire, wire to wire **Fatigue, Fracture, Vibration, Aging, Radiation...**

Driving applications: HPC / AI / 5G

- ✓ Hierarchical thermal model stitching technique to assembly the thermal model to handle heterogenous 3D-IC system
- Global model simulation of 100µm*100µm low-resolution meshing within 5 hours, followed by detailed model simulation of each die using Intelligent Adaptive Meshing in 1.5 hours
- ✓ 3D-IC junction Tmax optimization with HTC applied on the package surface and heat spreader components included.

3D-IC system with GPU/CPU/HBM/logic dies assembled on a 50mm*50mm CoWoS

Intelligent Adaptative meshing to reduce total mesh count without accuracy loss

Thermal result for large 3DIC

Fast Static/Transient Thermal Analysis

Performance and reliability degradation

 Aging, EM, IR drops, stress, switching speed, etc.

CTRONICS

and Technology Conference

- Fine grained thermal analysis on large 3DIC designs not possible using purely traditional FEA/CFD based approaches
- Long sequences of transient power need to be simulated to accurately predict how thermal hotspots change with time

Architecture level fast static/transient thermal analysis for various optimizations are required. (i.e. power/DvD/thermal/stress/test/sensor place)

["]Emerging Challenges on Thermal Modeling and Simulation for Advanced 3DIC Systems", N. Chang, Keynote, REPP, 2022

ML-Augmented Static Thermal Solver for ML-based Hotspots Detection

Two decay curve approaches in the flow:

- Characterize the decay curves in real-time at different locations. SSMR can be generated in real-time as well based on 3-layer die model.
- Use pre-trained decay ML models. The decay ML models will include both the nominal decay predictor and the decay dependency on locations and local thermal conductivity.
- With orders of magnitude faster than FEA/CFD solvers in a distributed computing framework based on SeaScape

DeepONet network structure for pre-trained NFE model

Input feature (unit)
Power (mW)
Effective HTC (mW/um^2*K)
Die size (um)
Die 3-layer model (um)
Thermal conductivity
(mW/um*K)
Tile size (um)

Machine-learning based Static Thermal Solver with Distributed HTC

EE ECTRONICS ACKAGING DCIETY The 2024 IEEE 74th Electronic Components and Technology Conference

- Developed a novel Machine-Learning based Thermal solver to accurately predict chip temperatures for arbitrary power maps and distributed HTC patterns.
- The ML-Solver is inspired from keys ideas of traditional Ansys solvers. It iteratively solves for temperature on discrete subdomains given the power map, HTC and initial temperature. Flux conservation in each iteration is established using pre-trained ML models
- The ML-Solver is about 100x faster than current solvers and accurately predicts high-fidelity temperature maps on the chip.

<mark>/</mark>\nsys

Ranade, R., Haiyang, H., Pathak, J., Kumar, A., Wen, J. & Chang, N. (2022). A Thermal Machine Learning Solver for Chip Simulations. *4th ACM/IEEE Workshop on Machine Learning for CAD*

Optimization of Mobile Pkg Material Calibration for Thermal/Stress Integrity

As-is process/Challenges

- Sensitivity analysis of thermal material properties of mobile AP
- Fast and Accurate equivalent virtual thermal testing model \rightarrow Simple Model
- Trial & Error approach for fine tuning material → Expensive!
- Too many trials (1000+) need to be performed for 10+ parameters
- Challenges:
 - Significant manual effort for 1000+ trials
 - Accurate simple model for transient thermal analysis
 - Reduced Dependency on package type

Ansys Value Stream

- Robust workflow integration and optimization with optiSLang-AEDT Icepak
- Reduced input BC conditions and material properties (h,K,CP and Den)
- Sensitivity analysis with thermal material parameter of components.

Outcome

- Extract optimized equivalent properties of Simple model that is well matched with reference data
- Automatic DOE reduction to reduce the overall time for optimization.
- Reduced time for optimization and increased accuracy
 - 2~4 Weeks \rightarrow 4~5 Days

"Thermal Model Simplification of Mobile Device with Adaptive Metalmodel of Optimal Prognosis (AMOP)", V. Krishna, et al., iTherm, 2022

Time [sec]